Nvidia DLI Workshop: Building Transformer-Based Natural Language Processing Applications

Loading Events

« All Events

  • This event has passed.

Nvidia DLI Workshop: Building Transformer-Based Natural Language Processing Applications

March 17 @ 9:00 am - March 18 @ 1:00 pm

Nvidia DLI Workshop: Building Transformer-Based Natural Language Processing Applications
This 8-hour workshop is split into two 4-hour sessions.

Thursday-Friday, March 17-18, 2022, 9:00 AM – 1:00PM
Location: Virtual Event via Zoom
Fee: $10
Registration required: https://reg.conferences.dce.ufl.edu/SSP/1400084758

Applications for natural language processing (NLP) have exploded in the past decade. With the proliferation of AI assistants and organizations infusing their businesses with more interactive human-machine experiences, understanding how NLP techniques can be used to manipulate, analyze, and generate text-based data is essential. Modern techniques can capture the nuance, context, and sophistication of language, just as humans do. And when designed correctly, developers can use these techniques to build powerful NLP applications that provide natural and seamless human-computer interactions within chatbots, AI voice agents, and more.

Deep learning models have gained widespread popularity for NLP because of their ability to accurately generalize over a range of contexts and languages. Transformer-based models, such as Bidirectional Encoder Representations from Transformers (BERT), have revolutionized NLP by offering accuracy comparable to human baselines on benchmarks like SQuAD for question-answer, entity recognition, intent recognition, sentiment analysis, and more.

In this workshop, you’ll learn how to use Transformer-based natural language processing models for text classification tasks, such as categorizing documents. You’ll also learn how to leverage Transformer-based models for named-entity recognition (NER) tasks and how to analyze various model features, constraints, and characteristics to determine which model is best suited for a particular use case based on metrics, domain specificity, and available resources.

This 8-hour workshop is split into two half day sessions. The registration fee covers both sessions.

Learning Objectives:

By participating in this workshop, you’ll

  • Understand how text embeddings have rapidly evolved in NLP tasks such as Word2Vec, recurrent neural network (RNN)-based embeddings, and Transformer
  • See how Transformer architecture features, especially self-attention, are used to create language models without RNNs
  • Use self-supervision to improve the Transformer architecture in BERT, Megatron, and other variants for superior NLP results
  • Leverage pre-trained, modern NLP models to solve multiple tasks such as text classification, NER, and question answering
  • Manage inference challenges and deploy refined models for live applications

Prerequisites

  • Experience with Python coding and use of library functions and parameters
  • Fundamental understanding of a deep learning framework such as TensorFlow, PyTorch, or Keras
  • Basic understanding of neural networks

Suggested materials to satisfy prerequisites

Hardware Requirements: Desktop or laptop computer capable of running the latest version of Chrome or Firefox. Each participant will be provided with dedicated access to a fully configured, GPU-accelerated server in the cloud.

Certificate: Upon successful completion of the assessment, participants will receive an NVIDIA DLI certificate to recognize their subject matter competency and support professional career growth.

Workshop provided by Nvidia and Research Computing. Any questions, please contact Ying Zhang at yingz@ufl.edu.

Registration: https://reg.conferences.dce.ufl.edu/SSP/1400084758

Details

Start:
March 17 @ 9:00 am
End:
March 18 @ 1:00 pm
Event Category: